返回首页
数智编程(vibe coding)的一些心得体会
技术文章

数智编程(vibe coding)的一些心得体会

Vibe Coding 时代

2025年11月27日0 次浏览

1. 清晰规划比盲目 “让 AI 自由发挥” 更重要

1) “Planning is everything” ——不要让 AI 自己随意规划整个项目,否则代码会混乱。
2) 最开始要做一个 Game Design Document(GDD,或者如果是应用的话,就是产品需求文档 PRD),以 Markdown 格式写清你的构想。
3) 之后要让 AI 基于这个设计文档 +技术选型,生成一个 实现计划(implementation plan),而不是直接让 AI开始写代码。
4) 实现计划里的每一步都应该是小粒度,并且附带测试,这样每次 AI 写出的功能都能被验证。

2. 维持上下文一致性:用 Memory Bank(记忆库)

1) 建议创建一个 memory-bank 文件夹,把 GDD、tech-stack、implementation plan、progress、architecture 等重要文档都放进去。
2) AI 在生成代码时 “总是” 读取关键规则 /文档(例如 architecture.md, game-design-document.md),以保证它写出来的东西是基于你当前的整体结构,而不是零散乱写。
3) 你还应该在 progress.md 中记录每一步完成情况,在 architecture.md 中补充每个文件或者模块的架构解释。这样未来回顾或让 AI 继续开发时,会更清晰。

3. 迭代 + 验证 + 提交

1)用 AI 写第一步(实现计划里 Step 1)之后,不要马上继续下一步,而是让你自己运行测试:确认 AI 写的代码是否满足预期。
2)每完成一个 step,就 commit 一次。这样可以保留历史,也便于后退/修正。
3)每一步都开启新的对话(新的 Chat /新上下文)让 AI “重新读 memory-bank + progress 再继续下一步”。这种方式能避免上下文混乱。

4. 为新特性写 feature-specific 文档

1)在基础框架(base game / app)完成后,想加新功能(特效、声音、UI …)时,不要直接命令 AI 写代码,而是为每个大功能写一个 feature-implementation.md:列出小步骤 +测试。
2)然后让 AI 逐步实现这些 feature,保持明确、模块化、可测试。

5. 错误处理 & 卡住时的方法

1)如果 AI 生成功能出错,用 Claude Code 的 /rewind 回到上一步重新尝试。
2)对于 JavaScript 错误,建议把控制台(console)日志/错误复制到 VSCode,让 AI 帮你分析。
3)如果问题很复杂、卡住了,可以把整个 repo 做成一个大文件(用类似 RepoPrompt / uithub 的方式),然后请 AI 从整体视图帮你诊断。

6. 优化 AI 工具使用

1)对于小改动(refactor /小调整等),建议使用较小 /中等能力的模型(如 GPT-5 medium)进行,以节省成本,同时保持响应质量。
2)配合使用 CLI 和 VSCode:既可以在命令行里运行 Codex CLI / Claude Code 来看 diff,又可以通过 VSCode 插件维持开发节奏。
3)为 Claude Code 或 Codex CLI 自定义命令,比如 /explain $arguments:先让模型理解某个模块 /变量 /逻辑,然后再让它基于理解做任务,这样能提升生成质量。
4)频繁清除对话上下文(如 /clear/compact),避免旧对话内容影响新的 prompt。

7. 风险意识与权衡

1)虽然 vibe coding 鼓励快速产出,但这种方式有潜在风险:AI 写出的代码可能结构混乱、未来维护困难。社区里有人提到 “代码混乱到调试噩梦”。
2)有人指出 AI 写出的逻辑有 bug(如并发问题、不正确的 API 调用等),这些 bug 很难被察觉,因为代码“看起来对”。
3)如果项目到后期进入生产阶段(或用户较多时),最好考虑重构(vibe-refactor):有人在社区里专门提供这种服务,把用 AI 快速写出的 “原型 / β 版本” 变得更健壮。
4)保持适度的审查机制:虽然是 vibe coding,但定期审查代码、做重构、建立测试习惯非常重要。

8. 持续反馈与学习

1)每次迭代完成后,不仅记录 progress,还记录 architecture 的变动和思考,这样下次生成代码时 AI 有 “记忆” 可用。
2)如果你卡住了,或者某些 prompt /策略不成功,可以向社区求助(例如 Reddit 的 r/vibecoding)。很多人都在分享他们失败 +成功的经验。
3)建议保持小步快跑 — 用 AI 快速原型验证想法,不要一次把所有功能堆进去。发现方向对了再慢慢加。

9. 综合心得

1)vibe coding 是一个强大的快速原型工具:它可以让你很迅速地把想法验证出来。但它不应该取代所有传统的软件工程流程,尤其是当你追求长期维护或扩大规模时。
2)上下文管理非常关键:记忆库(memory-bank) + 明确规则(Always read architecture / GDD)是维持项目健康的重要支撑。
3)测试不可省略:每一步有测试、每个 feature 都拆开实现并验证,是保证生成代码可用性的关键。
4)灵活结合 AI 与人类判断:AI 写的东西非常有用,但人类需要持续审查、校正、重构。
5)社区很有参考价值:阅读其他 vibe coder 的经验(比如他们卡住了什么、重构怎么做)对自己的实践非常有帮助。